The Effect of Interatomic Potentials on Nanometric Abrasive Machining
نویسندگان
چکیده
One of the major tasks in a Molecular Dynamics (MD) simulation is the selection of adequate potential functions, and if the potentials don’t model the behaviour of the atoms correctly, the results produced from the simulation would be useless. Three popular potentials namely; EmbeddedAtom Potential (EAM), Morse and the Lennand-Jones, were employed to model copper workpiece and diamond tool in nanometric abrasive machining. From the simulation results and further analysis, the EAM potential was found to be the most reliable because it best describes the metallic bonding of the copper atoms and it demonstrated the lowest cutting force variation. More pile of atoms is observed during the phenomenon of ploughing and the potential and total energies are more stable with the EAM. KeywordsInteratomic Potentials; Molecular Dynamics; Abrasive Machining
منابع مشابه
Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics
Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics s...
متن کاملMicro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles
Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...
متن کاملMicro Machining of AISI 440C Stainless Steel using Magnetic Field and Magnetic Abrasive Particles
Magnetic abrasive finishing (MAF) is a micromachining process that uses magnetic field and magnetic abrasive particles to conduct the mechanism of material removal in micro-nanometer scales. In this paper, by an experimental method and statistical analysis, the effects of parameters like working gap, work-piece rotational speed and material removal mechanism (injection of abrasive slurry of Al<...
متن کاملInvestigation on Process Parameters of Ball Screw Finishing Using Magnetic Abrasive Field
Surface finishing is one of the most significant steps in industries which are engaged with surface quality. Finishing by magnetic field is a new method of surface finishing. In this process, machining is executed in mechanical way and semi-homogeneous abrasive slurry performs finishing of surfaces. Needed force to grind surfaces is made by magnetic field. Therefor this method is considered as ...
متن کاملRole of Interatomic Potentials in Simulation of Thermal Transport in Carbon Nanotubes
Interatomic potentials, which describe interactions between elements of nanosystems, are crucial in theoretical study of their physical properties. We focus on two well known empirical potentials, i.e. Tersoff's and Brenner's potentials, and compare their performance in calculation of thermal transport in carbon nanotubes. In this way, we study the temperature and diameter dependence of thermal...
متن کامل